ウクライナ軍善戦の理由 ランチェスターの法則を使って考えてみた

2月24日にロシア軍がウクライナに侵攻して、すでに10日が経っている。ロシアは世界第二位と言われるほど圧倒的な軍事力を持っているから、ウクライナはすぐに制圧されるだろうとの予測が大半である。しかし、実際にはロシア軍はまだウクライナの一部を制圧しただけで、首都キエフの陥落もできていない。
つまり、ウクライナは予想以上の善戦をしている。その理由についてはいろいろ挙げられるが、ここでは、ランチェスターの法則を使ってウクライナ善戦の理由を考えてみたい。

ランチェスターの法則は今日ではマーケティング手法として、例えば中小企業が大企業に勝つ方法などとしてよく知られているが、もともとは戦場で、犠牲者がどれだけ出るかを数理モデルによって算出する技法である。基本的には軍事力の弱い方が犠牲者が増えていく。つまり強い方が勝つという理論である。

この表はロシア軍とウクライナ軍の戦力を比較したものであるが、この数値を見る限りロシア軍が圧倒的に強力である。ならばランチェスターの法則に従ってロシア軍が勝利するのだろうか。実はランチェスターの法則には戦力の劣る方が勝つ、弱者の戦略も用意されているのだ。

ウクライナとロシアの戦力比較 BBCニュースより

ランチェスターの法則が成り立つのは、実際に戦闘が行われている地域に限られる。いくらロシア軍が全体として強力だと言っても、実際に戦闘が行われる地域にどれだけ戦力を投入できるかは別問題である。つまり局地戦の戦力でみて、ウクライナ軍がロシア軍より勝っていればウクライナ軍が勝つのである。
また、ランチェスターの法則には第一法則と第二法則がある。第一法則は一対一での戦いであり、犠牲者数は戦力の差に比例する。第二法則は総力対総力の戦いであり、これは戦力の差に対して二乗で効いてくる。

ウクライナ軍の取るべき戦略としては局地戦に持ち込み、かつ、正面攻撃ではなく側面から一対一の攻撃を挑むということになる。これが弱者の戦略である。

ジャベリン対戦車ミサイル 戦車隊対戦車隊の戦いではなく、ウクライナ軍は戦車対歩兵で戦っている

対する強者の戦略ではできるだけ大軍でまとまって相手の軍勢を一気にたたくという方法がとられる。例えば、湾岸戦争では、アメリカ軍は砂漠の中を戦車を横一列に並べて進軍し、散らばって戦うイラク軍を駆逐していった。これは明らかな強者の戦略である。

これに対してウクライナ戦争では、まったく逆の展開となっている。ウクライナは非常に平坦な土地で、広大な農地が広がり、ところどころに森や林がある。ここに道路が何本か直線状に走っているだけだから、ロシア軍はこの道路を一列縦隊で進まざるを得ない。

ウクライナ軍は、この縦に長く伸びたロシア軍の先頭勢力とだけ戦えばいい。つまり、いくらロシアが大軍を送り込んだとしても実際に戦うのは先頭だけ。つまり局地戦となり、大軍の意味がないのである。実際、キエフに向かう道路にはロシア軍の車両が数珠つなぎになったまま、戦闘に参加せず何日も動いていない。

このまま時間が経てば、ロシア側の燃料や食料が不足してくるが、自国の大軍が道を塞いでしまっているので補給できないという皮肉な状況になるだろう。そして、やがて春になり、雪が融けてくるとウクライナの豊かな畑が泥沼化するから、ロシア軍の車両は道路から外れて動くこともできなくなる。

しかし、戦局が長引くほど犠牲者が増えてくる。ウクライナだけでなく、ロシア兵の被害も増える。ロシアにとってもこの戦争で失うものは多い。ロシアがウクライナをつなぎ留めたいのなら他にも方法があるはず。それにはまず、プーチンが「打ち方止め」と命令することだ。

2022年3月6日

旭化成の火薬工場で大規模爆発事故 なぜひとりで作業していたのか

3月1日。宮崎県延岡市にある旭化成グループのカヤク・ジャパン東海(とうみ)工場で大規模な爆発事故が発生。作業員ひとりが行方不明となり、3人がけがをしている。ロシア軍のウクライナ侵攻に重なったため、マスコミではあまり大きく取り上げられていないが、重大な事故である。

今回の事故では貯蔵されていたニトログリセリン約2千kg他のダイナマイト3万本に相当する爆発物が爆発し、工場は跡形もなく吹き飛んだ。
ニトログリセリンは消防法では第5類危険物(自己反応性物質)に分類されるが、第5類危険物とは要するに爆薬である。火をつけるとか電気火花を飛ばすとかしなくても、加熱や衝撃だけで爆発を起こす大変危険な物質である。

原料はグリセリンで、これは石鹸を作るときに大量に生成する。このグリセリンを硫酸と硝酸を混ぜた混酸で処理するとニトログリセリンができる。製造自体は非常に簡単である。

ニトログリセリンの化学構造式


発明したのはイタリアの化学者、アスカニオ・ソブレロであるが、非常に危険な物質であるため発明から1年以上秘匿していたという。その後、スウェーデンのアルフレッド・ノーベルがこれを硝化綿に混ぜると安定性が増すことを発見した。これがダイナマイトである。

ちなみに、ニトログリセリンを扱った映画に「恐怖の報酬」という作品がある。ベネズエラで発生した油田火災を爆風で吹き消すために、大量にニトログリセリンをトラックに積んでジャングルの中のでこぼこ道を運ぶというストーリーであるが、その危険な運搬にははらはらさせられた。

さて、今回の爆発事故であるが、当時3名の作業員が工場内で作業をしており、この内、現在行方不明になっている従業員が液体の火薬原料の重さを測って金属製の容器に移す作業をしていた。残りの2人は計量された原料を運搬していて、爆発した時は工場から200m離れた位置にいて無事だったという。この3人の作業員とは別の3名が爆風などによりけがをしている。

大学のときに「火薬学」という講義を受講したことがある。細かいことは忘れてしまったが、ニトログリセリンはとにかく危険なので安全に取り扱うために様々なノウハウがある。もちろん、その作業はマニュアル化されているだろうし、慎重に行われるはずである。

また、もうひとつ、講義では作業は必ず2人で行う必要があると言われたのを覚えている。2人で作業を行えば、ひとりが間違いをおこしても、もうひとりが間違いを指摘することができる。2人が同時に同じ間違いをする確率は非常に低くなる。ではなぜ3人ではいけないかというと、事故が起こったとき2人作業なら被害者の数は2人で済むからである。

今回の事故をみると、作業員が3人いたことがまず不可解だが、さらに実際の作業をひとりで行っていたことは問題だろう。このような危険な作業をなぜひとりで行っていたのか。いつもそうなのか。それとも何かの理由があって今回だけ一人で行っていたのか。

もちろん、作業員の数だけが事故の原因ではないだろう。今後、会社は原因究明を確実に行って再発防止に努めてほしい。

2022年3月3日

【関連記事】
原子力発電のここが危険 ブレーキを踏み続けなければ暴走するシステム
ガソリン火災から身を守る方法 ガソリン火災は燃えたあとも怖い
ガソリンにマッチの火を近づけても火はつかない?ウソ
京アニ放火事件被害拡大のなぞ


核融合発電は危険がいっぱい 隠ぺい体質の開発になっていないか

京都大学発スタートアップ企業の京都フュージョニアリング(株)が核融合実証プラントを使って核融合設備の試験を始めると新聞等で報道された。その実証プラントのイメージが図―1である。

図ー1 核融合実証プラント

この実証プラントでは、核融合を疑似的に再現してエネルギーを発生させ、そのエネルギーを熱に変換。なんらかの熱媒体を加熱し、その熱媒体で水を蒸発させて高圧スチームを作り、スチームタービンに送って発電を行うものである。
しかし、この図で気になることがある。それは「核融合を疑似的に再現する装置」で発生させるエネルギーとは何なのかということである。

核融合は夢のエネルギー源と言われて期待が大きい。水素と言う無尽蔵の原料を使って膨大なエネルギーを生み出す。放射性物質の排出もなく安全であると。しかし、実際に開発されている核融合炉の現実は違っている。

まず、実際の核融合は無尽蔵に存在する水素を使うものではない。水素は水素でも、重水素(ジューテリウム)と三重水素(トリチウム)という希少な資源を反応させるのだ。この融合反応によって高速中性子が発生する。この高速中性子は融合炉を取り巻くリチウムに当たって核反応を起こしてヘリウムとトリチウムになる。このトリチウムは再び燃料として使うことができる。こう言えばとてもよくできたシステムのようにも見える。この関係を図―2に示す。

図ー2 核融合反応経路

しかし、これには問題がある。まず、高速中性子は立派な放射線であり、人体に非常に有害。しかも透過性が高いので、炉の外部に漏れる可能性がある。そして、核融合エネルギーは実は熱ではなくて、この高速中性子と言う形で発生する。だから熱エネルギーに転換する必要があるというわけだ。

つまり、図1に示されたエネルギーとは、言い換えれば「高速中性子線」ということだろう。なぜ、高速中性子線とは言わずにエネルギーと言うのか。また、高速中性子はいろいろな材料に当たると、その材料を劣化させるとともに、放射能を持たせる。

このように核融合は実は放射線を出さない安全な発電方式ではないのだ。中性子線といわずにエネルギーと言っているのは、そのことを指摘されるのがいやなのだろう。

また、エネルギーを熱に転換すると言っているが、これは多分高速中性子をリチウムに当てて、トリチウムを発生させることを兼ねているのだろう。そして加熱されたリチウムを水と熱交換させてスチームを発生させて、スチームタービン発電を行う。

しかし、リチウムは失敗したあの高速増殖炉もんじゅで使われたナトリウム以上に反応性が高く、水と接触しただけで発火、爆発する物質である。そのリチウムを水と熱交換させる?おいおい大丈夫か?

誤解しないでほしいのは、筆者はこの実証実験自体を意味がないと否定しているわけではない。高速中性子を完全に遮蔽し、劣化しにくく、放射能を持ちにくい材料を開発し、リチウムを安全に取り扱うことのできるノウハウをこの実証試験によって確立すれば、核融合発電も実用化できるかもしれない。(個人的には無理だと思うが)

しかしながら、それなら核融合は夢のエネルギー源などというのではなく、危険性があるということも公表し、そのリスクを最小に抑える研究をやっているのですと説明すべきである。高速中性子という危険なものをエネルギーなどと言い換えるようなごまかしをしていい訳がない。都合の悪いことは隠すという態度は却って不審を招くことになる。

【関連記事】
核融合発電は「クリーンで無尽蔵で安全」ではない  実用化にはいまだに高い壁
原子力発電のここが危険 ブレーキを踏み続けなければ暴走するシステム
福島第一原発のトリチウム汚染水問題
浮体式洋上風力発電の発電コストは原子力より安い!  日本のメーカーも参入

ENEOS和歌山製油所閉鎖は突然の決定ではない 既にプログラム済み

25日、石油元売最大手のENEOSが2023年10月を目途に和歌山製油所を閉鎖すると発表した。和歌山製油所は処理能力12万7,500バレル/日、従業員数450人、関連従業員を加えると1,200人が働いていると言われる。日本ではほぼ中規模の製油所である。
この発表を受けて、和歌山県知事がENEOSに対して怒りの抗議をしたと報道されている。何の相談もなく突然の閉鎖とは何事か。雇用を守ってもらいたい。との抗議である。

和歌山製油所は石油元売会社のひとつ東燃ゼネラルの製油所であったが、2017年に同社はJXグループと合併してJXTGグループとなっている。その後、JXTGはENEOSという名前に変更されているが、ENEOSはJXグループのブランド名。つまり、合併と言いながら、実際は東燃ゼネラルがENEOSグループの傘下に入る形となっている。

そして、その合併後、わずか5年で今回の和歌山製油所の閉鎖である。ここで疑問が生じる。なぜENEOSは閉鎖される可能性のある製油所をわざわざ傘下に入れたのだろうかと。実はその裏には国策があったのだと思う。

近年、国内産業のソフト化や空洞化、人口の減少等の理由で、日本の石油製品の需要は下がり続けている。特にガソリンについては、自動車の燃費向上に加えて、若者の車離れ、少子高齢化の影響でどんどん販売量が減ってきている。それに脱炭素化がその動きを加速する。

石油製品の需要が減れば、それに合わせて日本の製油所は順次閉鎖せざるを得ない。そして政府の方針に従えば、2050年には石油化学や潤滑油、アスファルトのような非燃料の生産部分を除いて、日本の製油所はほとんどすべて閉鎖もしくは縮小となる。

このとき、まず考えるべきは、従業員の雇用の問題であろう。日本の場合、閉鎖されるからと言って米国のように従業員が即座に解雇されるわけではない。ENEOSは全国に10か所以上の製油所や事業所を持っているから、従業員の大半は他の事業所へ配置転換されるだろうし、希望すればかなり高額な割増退職金をもらって退職することも可能であろう。

しかし、従業員の配置転換といっても、それは多くの事業所を抱える大企業でなければ難しい。1980年代。日本には17社もの石油会社がひしめき会っていた。1社1製油所というような小規模な石油会社が製油所を閉鎖したら、従業員の行き場がなくなってしまう。

幸い石油業界は国策によって合併を繰り返し、各社の大規模化が図られてきた。現在はENEOS、出光、コスモのほぼ3グループに集約されている。今後は石油製品の需要減少に合わせて、順次、各社の製油所が縮小あるいは閉鎖されていくことになるだろう。

和歌山県知事は何の相談もなく、突然閉鎖を告げられたとの怒りであるが、おそらく国の方針によって、製油所の閉鎖は既定の路線だろう。つまり、和歌山製油所は突然の閉鎖決定ではなく、ENEOS傘下に入った時から既にプログラムされていたということである。そして、ENEOSの大田社長も語るように、今後も製油所の閉鎖が順次進められていく。そして2050年を迎えることになる。

2022年1月28日

【関連記事】
石油産業はこれからどうなるのか 脱炭素社会で石油系燃料が売れなくなったら
石油最大手ENEOSの歴史は合併の歴史 電力業界、ガス業界のとの統合はあるか
製油所で燃えている炎は余剰になった石油を燃やしている
原油から作られる石油製品の割合は決まっている? 連産品という誤解
石油コンビナートの照明は夜中に消している? 工場萌えの裏側

初めて点火された核融合反応 しかし実用化にはまだ遠い

11月30日付のPhysics の記事によると、ローレンスバリモア国立研究所のデビ―・キャラハンは、投入したエネルギーより大きいエネルギーを生み出す核融合反応、すなわち核融合の点火に成功したと発表した。

核融合は水素原子と水素原子が融合してヘリウムができる反応である。このとき大量の熱が出るから、この熱を使って発電を行うのが核融合発電である。水素は水に含まれるから無尽蔵にあり、放射能もなく、安全な発電方法。これが完成すればエネルギー問題も地球温暖化問題も一気に解決するだろうと言われる。

この夢のような発電方式が今まで実用化されていなかった大きな原因は核融合を起こすために1億度以上という非常な高温と密度が必要な事である。温度が高すぎて容器に入れて加熱すると容器が融けてしまうから、燃料を宙に浮かせた状態で温度と密度を維持しなければならない。これが難しい。しかし、わずかな時間であるが、これが可能になり実際に核融合が実現している。

次の段階は核融合エネルギーの黒字化である。一旦核融合が起これば、膨大なエネルギーが得られるが、これまでは発生する核融合反応が微小過ぎて、核融合を起こすために投入されたエネルギーの方が大きかったのである。今回は、慣性封じ込めと言われる方法を使って、投入エネルギーよりも多くの核融合エネルギーが得られたという。

国立点火施設で使用された反応器の1つ。真ん中に燃料がある。

このように書くと、核融合発電は着々と実用化に向かっているように思われるかもしれない。ここまでくれば核融合発電の実用化まであと一歩だとするマスコミもある。しかし残念ながら、実用化は以下のような理由から程遠い。

まず、今回の核融合は直径数mm程度の燃料を使って、ほんの一瞬達成されたに過ぎないということ。実用的な発電所とするためには、もっと大量の燃料を使って連続的に安定的に核融合を行わなければならない。

さらに問題なのは、燃料として水素ではなく、重水素とトリチウムが使われていることである。トリチウムは地球上にはほとんど存在しない。つまり、核融合発電の燃料は無尽蔵どころか、すこぶる希少な資源なのである。もう一つの問題は核融合に伴って高速中性子が発生すること。これは人体にとって非常に有害である上に、透過性が高い。さらに高速中性子が設備に損傷を与える。これらの問題点をクリアして何とか発電にこぎつけても、果たして他の発電方式に比べて経済性があるかどうかも疑問である。(核融合発電は「クリーンで無尽蔵で安全」ではない  実用化にはいまだ高い壁 参照)

確かに核融合のエネルギー収支は黒字化したが、それと実用化とは全然違う。科学者が実験室で成功したからと言って、一足飛びに実用的な発電設備が作れると考えるべきではないだろう。

電気自動車BEVに完全に舵を切ったトヨタ いよいよ燃料電池車FCVは撤退か?

トヨタは完全にEVに舵を切った

トヨタは12月14日に行われたバッテリー式電気自動車(以下BEV)戦略に関する説明会で、今後発売する予定のBEVのお披露目を行った。しかし、その演出が、また憎い。最初にbZシリーズ5台を並べ、それぞれの特徴について豊田社長自らが説明した。一度に5車種も。それだけでも驚くのだが、バックのカーテンが取り払われると、さらに11台の様々なタイプのBEVが姿を現したのだ。

米国エネルギー省が公表しているFuel Economy Guide Book(2021年版)によると、全米で15社53モデルのBEVが販売されているが、そのうち最も多くのモデルを出しているのがテスラとポルシェで、それでもそれぞれ14モデルと12モデルに過ぎない。その他の大半のBEVメーカーは1モデルか2モデルしか販売していない。(アメリカではどんな電気自動車(EV)が売られているか 53モデルのモーター出力、充電時間、走行距離、燃費など 参照)

そんな中、トヨタが一気に16モデルのBEVを公表したのだ。そしてトヨタはこれらのBEVをここ数年にうちに順次販売ルートに乗せていくという。さらにトヨタは2030年までにBEV30モデルを投入し、全世界で年間350万台の販売を目指すという。トヨタのBEVのラインアップは、世界中を見渡しても最大級である上に、この販売量である。トヨタは完全にBEVに舵を切り、一気に世界のトップを目指す戦略であろう。

FCVは撤退か

一方、トヨタは従来から燃料電池車(以下FCV)の開発に力を入れてきた。今後これはどうなるのか。この発表会でトヨタはBEV以外の電動車(ハイブリッド車、プラグインハイブリッド車、FCV)にも引き続き注力し、車を販売する地域のエネルギー事情やニーズに合わせた事業を展開していくと語った。
しかし、今回の発表会で見せた「どうだ、トヨタはもうEVで出遅れているとは言わせないぞ」と言わんばかりの論調にFCVはすっかり色あせた感がある。では今後もFCVの開発は続けていくのだろうか。

今年初めの時点で、筆者が知る限り、世界的に見てもFCVを一般に市販しているメーカーはトヨタ、ホンダ、ヒュンダイの3社しかなかった、その後、ホンダはFCVから撤退しているので、現在は2社、4モデルだけになっている。
BEVは充電時間が長く、一充電で走れる距離が短いという欠点がある。これに対して、FCVは充填時間も走行距離もガソリン車並みというのが売りである。しかしながら、以前筆者が書いたように、乗用車タイプのFCVにはもう未来はないだろう。(燃料電池車に未来はあるか FCVが普及しない理由 参照)

一番の問題はFCVの燃料となる水素を供給する水素ステーションが少ないことである。いかにFCVが優れていたとしても、燃料の水素が供給されなければ走ることはできないから、これが解決しない限りFCVの普及は無理。

そして、ステーション1か所当たりの設置費用がガソリンスタンドの数倍もするのだから、今から水素ステーションがガソリンスタンド並みに充実するという可能性は現実的にほとんどない。おそらく、路線バスのような例を除いてFCVが普及することはないだろう。

トヨタは今まで水素ステーションの設置を水素供給会社に呼び掛け、政府もそれを補助してきた。いまさらFCVの旗を降ろすには忍びないであろうが、もうそろそろFCVは撤退の潮時ではないだろうか。

2021年12月16日

【関連記事】
アメリカではどんな電気自動車(EV)が売られているか 53モデルのモーター出力、充電時間、走行距離、燃費など
燃料電池車に未来はあるか FCVが普及しない理由

石油産業誌に記事が掲載されました(今後の世界の基礎化学品の需要と原料の予想)

今後の基礎化学品(メタノール、石油化学製品、アンモニア)の需要・生産状況の予想について、IEAのレポート(2018年)を中心に紹介した記事が、石油産業誌11月号に掲載されました。概要は次のとおりです。

1.メタノール:特に中国で伸びる
メタノールの生産量は2030年までに50%以上増加し、2050年にはほぼ2倍になる。特に中国は現在、世界の生産量の約半分を生産しているが、この割合いは2050年にも変わらない。メタノールの需要の35〜40%が燃料用で、ガソリンなどに直接添加して使用するか、MTBEやDMEに転換して使用されている。

2.石油化学製品:環境懸念にも拘わらず成長する
オレフィンおよび芳香族のような石油化学製品の需要は2050年までに約60%増加する。今後、様々な地域で人口と所得が増加することに伴って、プラスチックの消費は特に包装と建設用を中心として増加する。世界平均で、1人当たりの生産量は2017年に約47 kg /人だったものが2050年には60kg /人以上に増加する。欧州や日本などの先進国では、環境影響へ懸念からプラスチック消費の停滞が見られる。

3.アンモニア:肥料用が頭打ち
アンモニアは2030年までに15%以上、2050年までに30%以上の増加が見込まれる。特にアフリカと中東では、2050年までに生産量がほぼ2倍になる。アンモニアの主な用途は肥料であるが、先進国では飽和状態となり、発展途上国でも肥料効率が向上することによって販売量の伸びが抑制される。アンモニアは火薬、ナイロン、アクリル繊維、ニトリルゴムなどにも使用されるが、全体の10〜20%に過ぎない。

4.原料変化の動き
石油化学製品の原料としては現在ナフサや天然ガスが使われている。それ以外の原料としてはエタノールからエチレンを製造する技術などがある。化石資源以外の代替原料は2030年までに5倍に成長し、2030年から50年の間にほぼ3倍になるが、それでも2050年時点で、全体の2%を占めるに過ない。

基礎化学品原料の推移(世界合計)※HVCは石油化学製品

メタノールとアンモニアの原料は世界的には天然ガスであるが、中国では石炭を使用している。メタノールからオレフィンを製造する技術(MTO)が実用化されており、特に中国では今後、メタノールが石油化学製品の原料として使われる。ただし、中国ではメタノールの原料としては依然として石炭が使い続けられると予想されている。

2021年12月12日

緊急着陸した米軍F16戦闘機が落とした外部タンクの危険性

30日午後6時頃、三沢基地の米国空軍F-16戦闘機が飛行中に異常を起こし、青森空港に緊急着陸した。この緊急着陸に先立って燃料タンクを空中で投棄したが、そのタンクが青森県深浦町の歩道付近に落ち、一歩間違えば人命にもかかわると問題になっている。
航空機は機体内に燃料タンクを持っているが、このタンクの容量を大きくすると重くなって機敏な行動ができない。逆に小さくすると飛行距離が伸びない。この矛盾を解決する方法が外部に取り付ける燃料タンク、いわゆる増槽という物だ。
長距離飛ぶときは、この増槽を取り付けて燃料の積載量を増やす。空中で会敵した場合は、この増槽を落として身軽になってから戦闘に臨むことになる。
今回は空中戦ではないが、エンジンに異常が起き、緊急に着陸することになった。このときもできるだけ身軽になっておく必要があるため、増槽を落としたのだろう。

F-16戦闘機 主翼下のロケット型のものが外部燃料タンク


この外部タンク、1基で2000リットルの燃料を積めるという。これはドラム缶10本分。このタンクを2基搭載している。このタンクに充填される燃料はJP-8と言われるジェット燃料である。成分はほとんど灯油で、これに少量の酸化防止剤や静電除去剤が加えられている。
ジェット燃料って灯油なの? JP-1からJP-10、ジェットAからジェットB まで 参照)
この燃料、以前使われていたJP-4よりも引火性が低く、マッチやライターでも簡単には火が着かない比較的安全な燃料だ。ただし、高温になったり、噴霧状態になったり、布などにしみ込ませたりすると着火するようになる。燃えだせば大きな火力をもつ。肌に付着すればかぶれるし、飲み込めば当然、毒性がある。
もう一つの危険性は、その重さである。満タンにすればジェット燃料だけで1.6トンほど。これにタンク自体の重さを加えれば2トン程度になるだろう。これが高空から落ちてくる。人や車に当たれば人命にかかわるし、人家に落ちれば屋根を突き破り、燃料をまき散らし、火気があれば火災にもなる。
いつも思うことなのだが、例え空中戦に臨む、あるいは緊急事態だからと言って外部タンクを落下させれば、そのタンクが地上の住民に被害を及ぼすことは十分予想できる。命がけの戦闘、緊急事態とはいえ、地上のことも考えずに空中から2トンもの重さのあるものを落下させて当たり前、それが増槽というものだという考え方はあまりにも無責任ではないか。それは、タンクを設計したエンジニア、そしてそれを運用する軍の責任である。
外部タンクの中の燃料を空中に放出できるような仕組みを作っておけば、緊急事態には、飛行中にタンクを空にすることができる。そうすればタンクを装着したまま着陸しても問題ないのではないだろうか。
人の頭の上を飛ぶ者の責任として、そのくらいの配慮はすべきだろう。

【関連記事】
ジェット燃料って灯油なの? JP-1からJP-10、ジェットAからジェットB まで

メタネーションは本当にカーボンニュートラルなのか CCUのパラドックス

2020年10月に菅総理が行ったカーボンニュートラル宣言以降、様々な技術開発が進められている。これは大変よいことだと思う。 
例えば自動車ガソリンの代わりに電気や水素が使われる。再生可能エネルギーを使って作ればという前提ではあるが、電気も水素もカーボンニュートラルと言っていいだろう。
では都市ガスはどうするのか。現在都市ガスは天然ガスを使っているからカーボンニュートラルではない。それで近年注目を浴びているのが、メタネーションという技術である。資源エネルギー庁のホームページでもガスのカーボンニュートラルを実現する「メタネーション技術」として紹介されている。しかし、このメタネーション、本当にカーボンニュートラルなのだろうか。

メタネーションとは、水素(H2)と二酸化炭素(CO2)を反応させて天然ガスの成分であるメタン(CH4)を合成して都市ガスとして利用する技術である。この合成メタンを燃やせばCO2が排出されるが、このCO2はもともとメタネーションの原料として使われているから、差し引きゼロとなって大気中のCO2を増やさないという理屈である。これはわかる。(このようにCO2を回収して、燃料やその他の用途に使うことをCCUという)

発電所などから回収したCO2を利用してメタネーションをおこなう工程を図であらわしています。
メタネーションによるCO2排出量削減(資源エネルギーHP「ガスのカーボンニュートラル化を実現する「メタネーション」技術より)


しかし、資源エネルギー庁の記事によると、このCO2は火力発電所や工場から排出されるものを使うという。排出されるCO2を再び使うのだからカーボンニュートラルだという。ん?本当にそうか?
火力発電で化石燃料を燃やして排出されるCO2はカーボンニュートラルではない。しかし、このCO2を回収して合成メタンを作るとカーボンニュートラルだという。これは納得がいかない。

汚れたお金をいろいろ金融機関を回していくと汚れたお金ではないように見えるという技法をマネーロンダリングというが、それに似ている。火力発電で出てきたCO2はカーボンニュートラルではないが、これを回収して再び燃料にして使えばカーボンニュートラルだという。これではマネーロンダリングならぬカーボンロンダリングではないか。

火力発電で出てくるCO2ではなく、大気中のCO2を回収して行うメタネーションなら確かにカーボンニュートラルである。この技術をDACというが、実は大変難しい。だから手っ取り早く火力発電から出てくるCO2を使うということになる。
火力発電のCO2はどうせ大気に放出されるから、大気に放出される前に回収すると考えればDACと同じだという考え方もあるだろう。う~ん、頭の中が混乱してきた。

しかし、要は大気中のCO2を増やさないというのがカーボンニュートラルのはず。火力発電で化石燃料を燃やしてCO2が出てくる以上、これをメタネーションで使おうがどうしようが大気中のCO2は増える。だから全体でみればカーボンニュートラルではない。その責任は火力発電にあり、メタネーションに責任はないというのだろうか。どっちも同罪だと思うが。

【関連記事】
CO2と水から石油を作ることは可能?…カーボンリサイクルは温暖化防止策の切り札ではない

三井化学がCO2排出量を削減できるバイオマスプラスチックを開発:アドマーEFシリーズ

近年、バイオマスプラスチックが話題に上ることが多くなってきている。最近日経XTechでも大手総合化学メーカー三井化学が開発したバイオマスプラスチック、接着性樹脂アドマーEFシリーズが紹介されている

三井化学のプレスリリースによると
「当社が世界に先駆けて開発し、多層ボトルやチューブ、フィルム・シートなどに使用される接着性ポリオレフィン樹脂アドマーにおいて、社会や顧客からのニーズが高く循環経済の実現に貢献する環境対応ラインナップ「アドマーEFシリーズ」を追加し、バイオマス化度50%以上を実現したバイオマスアドマーを開発しました。」
とのことだが、ちょっと分かりにくい。

プラスチックにはポリオレフィン(ポリエチレンやポリプロピレン)のような非極性材料と、ポリアミドやEVOHのような極性材料がある。三井化学のアドマーはこの二種の材料を接着させる接着剤の役割をする樹脂である。従来製品は他のプラスチックと同様に石油から作られているが、今回発表されたEFシリーズは、その原料の50%以上をさとうきびのようなバイオマスに求めた。つまり、バイオマスプラスチックの一種だという。

バイオマスアドマーで成型した多層ボトル(三井化学プレスリリースより)

このプラスチック、石油を使わずにどうやって作るのか。推定ではあるが、まずサトウキビを絞って糖を抽出し、この糖を発酵させてエタノールにする。このエタノールを分解してエチレンとしたあと、重合させてポリエチレンとし、このポリエチレンに官能基と呼ばれる極性部分を付加して作る。この場合、エチレン部分は植物が原料だが、官能基部分は石油が原料となる。
バイオマスプラスチックには生分解性のある物とないものがある。生分解性プラスチックは廃棄されると自然に分解されるが、アドマーEFシリーズは生分解性ではない。しかし、燃焼させても大気中の温室効果ガスであるCO2の増加を従来品より抑えるという特徴がある。

現在のプラスチックのほとんどは石油から作られている。使い終わったあとはゴミとして回収されるが、回収プラスチックの7割くらいは、実は燃やされている。もちろんこのときCO2が排出されることになる。
アドマーEFシリーズは、原料の一部が植物であるから、その原料植物が成長するときに大気中のCO2を吸収している。だから燃やして出てくるCO2のうち、植物が原料となった部分についてはもともと空気から取り入れたもの。だから、大気中のCO2は増えないという理屈になる。

といっても、今回のアドマーEFシリーズは、そもそも接着剤であるから使用量が少なく、さらにバイオ率は50%程度であるから、それほどCO2削減効果は大きくないだろう。しかし、今後、このようなバイオマスプラスチックが様々な用途で使われる可能性がある。本品はそんな時代の先駆けとなるかもしれない。

2021年11月27日